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Localized Dictionaries Based Orientation Field
Estimation for Latent Fingerprints

Xiao Yang, Student Member, IEEE, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE

Abstract—Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this
paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge
orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation
field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real
orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the
latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the
predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on
challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.

Index Terms—Fingerprint enhancement, latent fingerprint matching, orientation field, dictionary, pose estimation, Hough transform,

Markov random field

1 INTRODUCTION

ATENT fingerprints refer to the impressions of fingers

left on objects or surfaces. Such impressions are usually
not directly visible unless some physical or chemical tech-
niques are used to enhance them [1]. Latent fingerprints
are very important evidence for law enforcement agencies
to identify criminals and terrorists. Because of the very low
image quality, features (such as minutiae) in latents are rou-
tinely marked by trained latent examiners so that they can
be matched by automated fingerprint identification systems
(AFIS) [2]. In recent years, however, the need for “lights
out” latent identification is rapidly increasing because of the
increasing number of latent matching transactions [3]-[5].

To fulfill “lights out” latent identification, robust latent
enhancement techniques are indispensable. A very success-
ful and popular fingerprint enhancement method is based
on contextual filtering [8]-[12]. Given correct local ridge
orientations and frequencies, contextual filtering can suc-
cessfully connect broken ridges and separate joined ridges.
But correct ridge orientation field is critical for the success
of this method.

Conventional orientation field estimation methods esti-
mate local ridge orientation by analyzing pixel values in
very small neighborhood (say, 32 x 32 pixels), which are
very sensitive to image noise. As shown in Fig. 1(b), the
orientation field estimated by the well-known Short Time
Fourier Transform (STFT) method [6] for a poor quality
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latent fingerprint is very noisy, containing many local ori-
entation patches which are not likely to appear in real
fingerprints. Such errors are analogous to the non-word
errors in spelling correction [13]. To address the problem,
prior knowledge of fingerprint orientation fields has been
taken into account in [7]. A number of orientation patches
extracted from real fingerprints are clustered to form a
dictionary and noisy orientation patches are replaced by
closest real orientation patches in the dictionary. As we
can see from Fig. 1(c), the use of prior knowledge (in the
form of orientation patch dictionary) is helpful for correct-
ing many non-word errors. However, since the positions
of the patches have not been restrained, some orientation
patches may occur at impossible location. For example, the
orientation field estimated by this algorithm for the latent in
Fig. 1 contains a wrong delta singularity in the top region,
which is not likely to occur in real fingerprints. Such errors
are analogous to the real word errors in spelling correc-
tion [13]. These errors remind us that location-dependent
prior knowledge of fingerprints should be exploited in
orientation field estimation.

However, to exploit location-dependent prior knowl-
edge in orientation field estimation, fingerprints need to
be registered into a universal coordinate system, which
itself is a challenging problem for poor quality fingerprints.
Existing fingerprint registration approaches based on sin-
gular point [14] or point of maximum curvature [15] are
sensitive to noise and can not be used if the corresponding
area is very noisy or not available. But experienced finger-
print examiners can still roughly predict the pose of very
incomplete and poor quality fingerprints such as those in
Fig. 2. This fact suggests us that to achieve robust finger-
print registration, the statistics of whole orientation fields
should be utilized.

In this paper, we propose a robust fingerprint
registration algorithm, which is based on probabilistic
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Fig. 1. Comparison of orientation fields of a latent fingerprint in:
(a) Extracted by three different algorithms; (b) Short time Fourier
transform in [6]; (c) Global dictionary-based approach in [7]; and
(d) Proposed localized dictionary-based approach. The orientation field
in (b) contains a lot of non-word errors as marked by the red box, while
the orientation field in (c) contains real word errors as marked by the yel-
low box. Neither of the two types of errors is present in the orientation
field in (d).

voting of all local orientation patches, and a robust fin-
gerprint orientation field estimation algorithm, which is
based on localized dictionaries of orientation patches. The
outline of the whole system is shown in Fig. 3. Both the
registration algorithm and the orientation field estimation
algorithm consist of an off-line learning module and an
on-line estimation module. In the offline learning stage,
the spatial distributions of a set of prototype fingerprint
orientation patches and a set of localized dictionaries of
orientation patches are learnt based on a set of registered
training orientation fields. Given an input fingerprint, the
online estimation stage consists of the following steps:

1)  An initial orientation field is estimated using local
Fourier analysis.

2)  Thepose of the fingerprintis estimated using a proba-
bilistic voting algorithm which is based on the spatial
distributions of prototype orientation patches.

3) Candidate orientation patches are found for each
patch in the registered initial orientation field by
looking up the localized dictionaries.

4) The final orientation field is determined based on
context information.

Extensive experiments on three latent fingerprint
databases (NIST SD27 latent fingerprint database, Hisign
latent fingerprint database, and Tsinghua overlapped latent
fingerprint database) show that the proposed algorithm sig-
nificantly outperforms representative algorithms published
in the literature. The proposed algorithm has also been
tested on the FVC-onGoing FOE benchmark and ranked
first on the bad quality dataset.

Fig. 2. Latent fingerprints whose central areas are not available.

The rest of this paper is organized as follows. In sec-
tion 2, published orientation field estimation methods and
fingerprint pose estimation algorithms are reviewed. After
that probabilistic voting based fingerprint pose estimation
is detailed in section 3 and the localized dictionaries based
orientation field estimation algorithm is introduced in sec-
tion 4. Then, section 5 reports the experimental results
and finally our work is summarized and potential research
directions are discussed in section 6.

2 RELATED WORK AND MOTIVATIONS

2.1 Orientation Field Estimation

Most fingerprint orientation field estimation approaches
consist of two steps: local estimation, followed by regu-
larization (or smoothing). In this subsection, we provide a
brief review of representative approaches of each step and
describe the motivation of our approach. For a more com-
prehensive review and a performance evaluation of existing
orientation field estimation approaches, interested readers
can refer to [16], [17].

2.1.1 Local Estimation

Gradient-based, slit-based, and local Fourier analysis are
the three most widely used local estimation approaches.
Gradient-based approaches compute pixelwise gradients
and estimate local ridge orientation based on the gradients
of local neighborhood [14], [18]-[20]. Slit-based approaches
analyze the intensity variances along a set of orienta-
tions and choose the best orientation according to some
measures [21], [22]. Local Fourier analysis approaches com-
pute the Fourier transform of local fingerprint image and
estimate dominant ridge orientation by analyzing the mag-
nitude spectrum [6], [23]. Since these local orientation field
estimation algorithms take only local image block into
account, they will generate very noisy orientation fields in
the case of poor quality fingerprints.

2.1.2 Regularization Based on Local Smoothness
Assumption

A simple fact is that ridge orientations of fingerprint do not
change abruptly in most regions. Several orientation field
regularization approaches are based on this local smooth-
ness assumption. Low-pass filtering based method [14]
is the most commonly used smoothing method. A prob-
lem with this approach is that it is difficult to choose a
proper size of the filtering window. To resolve the prob-
lem, multi-resolution orientation fields are used in several
approaches [15], [22], [24]. However, such approaches
cannot handle the cases where the initial orientation field is
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Fig. 3. Flowchart of the proposed fingerprint pose estimation and orientation field estimation approach. The approach is composed of two relatively
independent parts. The first part is the off-line learning algorithm, while the second part is the on-line estimation algorithm.

significantly different from the true orientation field. Other
commonly used smoothing methods are based on Markov
random field (MRF) models [11], [25], [26] and variational
approaches [27]. These approaches cannot deal with very
poor quality fingerprints either, since they are also based
on the simple local smoothness assumption.

2.1.3 Regularization Based on Surface Fitting

Some researchers view orientation field regularization as
a surface fitting problem and use general functions, such
as, polynomials [28]-[30] and Fourier series [31], to repre-
sent fingerprint orientation fields. To address the special
discontinuity pattern of singular region, several specific
models are proposed, such as the zero-pole model [32],
point-charge model [33], [34], phase portrait model [35]
and quadratic differentials [36]. However, these models are
quite general in the sense that they can represent arbitrary
orientation fields. Without any constraint on the valid range
of parameters, these approaches will generate invalid fin-
gerprint orientation fields in the case of severe noise. An
additional inconvenience with the models which require
explicit information of singular points is that singular point
detection in latents itself is a very difficult problem. That
is why manually marked singular points were used in the
latent enhancement algorithms in [37], [38].

2.1.4 Regularization Based on Dictionary Lookup

Orientation field regularization using a dictionary of real
orientation patches is proposed in [7]. This method uses an
orientation patch dictionary constructed from a set of real
fingerprint orientation fields to represent the prior knowl-
edge of fingerprints. Noisy orientation patches outputted
by a local estimation approach are replaced by the closest
orientation patches in the dictionary. Experimental results
on the NIST SD27 latent fingerprint database showed that
this approach performs much better than two regulariza-
tion approaches which are based on smoothing and global
surface fitting, respectively. However, a limitation of this

method is that the spatial distribution of orientation patches
is not taken into account. Due to this limitation, it cannot
correct real word errors, i.e., the orientation patch is real but
its presence at that location is impossible. Such an error is
shown in Fig. 1(c).

2.1.5 Motivation of the Proposed Approach

The proposed approach belongs to the family of dictio-
nary based regularization. The difference from the approach
in [7] is that, instead of a single dictionary, a set of localized
dictionaries are used here. The use of localized dictionaries
is motivated by the fact that ridge orientations in differ-
ent regions of fingerprints have different characteristics. As
illustrated in Fig. 4, while ridge orientations in the cen-
tral region of fingerprints are very diverse depending on
fingerprint pattern types, ridge orientations in the periph-
eral region lack variety. In addition, the orientation patches
in four different peripheral regions are different from each
other. Such characteristics of fingerprint orientation fields
have its physiological cause according to fingerprint forma-
tion theory [39]. Thus, instead of using a single dictionary
of orientation patches for the whole fingerprint as [7], we
can construct a separate dictionary of orientation patches
for each location. Each dictionary contains only orientation
patches which are likely to appear at the corresponding
location. By using localized dictionaries to correct noisy
orientation fields, we hope that both the non-word errors
in Fig. 1(b) and the real word errors in Fig. 1(c) can be
reduced.

2.2 Fingerprint Pose Estimation

The pose of a fingerprint in an image is given by the finger-
print center (x,y) and the fingerprint direction 6. Figure 5
illustrates the definition of the pose of fingerprint using a
photograph of a finger and a fingerprint image. Compared
to orientation field estimation, pose estimation is a rel-
atively under-researched topic. Even the ANSI/NIST-ITL
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Fig. 4. Ridge orientations in different regions of fingerprints have differ-
ent characteristics as we can see in these four fingerprints of different
pattern types. Ridge orientations in the central region (patch E) of finger-
prints are very diverse, while the ones in the peripheral region (patches
A, B, C, and D) lack variety and are independent of fingerprint pattern
types. In addition, the orientation patches in the four different peripheral
regions are different from each other: (a) Arch. (b) Left loop. (c) Right
loop. (d) Whorl.

1-2011 standard [40], an significant update over the previ-
ous standard, does not provide a clear definition on the
center of fingerprints. In this subsection, we first review
several approaches which are related to pose estimation and
then describe the motivation of the proposed approach.

2.2.1 Region Mask Based Approach

Pose estimation is relatively simple in the case of rolled fin-
gerprints and slap fingerprints. When a rolled fingerprint is
complete and has good quality, the barycenter of the fore-
ground region can be used as the fingerprint center [41] and
the direction of the left and right boundaries can be used
as the fingerprint direction [42]. For slap fingerprints [43],
a similar approach can be used. However, this type of
approach cannot deal with fingerprints which are of poor
quality, incomplete, or have irregular shape. Unfortunately,
these situations are common in latent fingerprints.

2.2.2 Distinctive Point Based Approach

Many fingerprint indexing or classification approaches
rely on fingerprint registration for fast similarity compu-
tation [42], [44]-[46]. But the requirement of fingerprint

Fig. 5. Definition of the pose (x, y, 6) of fingerprint. (a) Photograph of a
fingerprint. (b) Plain impression of a fingerprint.
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Fig. 6. Predicting the center of a face based on a face part is analogous
to predicting the center of a finger based on an orientation patch. In
each subfigure, a part is shown on the left and an illustrative probability
distribution of the face/finger center is shown on the right. Note that
the size of the part is magnified for visualization purpose. (a) Eye. (b)
Partial forehead. (c) Combination of an eye and a partial forehead. (d)
Distinctive orientation patch. (e) Plain orientation patch. (f) Combination
of a distinctive orientation patch and a plain orientation patch.

indexing for registration is different from that of our prob-
lem, i.e., statistical modeling of fingerprint orientation fields.
The requirement of fingerprint indexing is that different
impressions of the same finger can be aligned well, while
the requirement of statistical modeling is that all fingerprints
can be aligned well. Thus, popular fingerprint registration
approaches based on some distinctive point (northernmost
loop singularity [14], [47], maximum curvature point [15] or
point whose neighboring orientation field meets some prop-
erties [42], [48]) do not meet our requirement. In addition,
distinctive point detection approaches cannot properly work
when the distinctive region is very noisy or not available,
which is very common in latent fingerprints (see Fig. 2).

2.2.3 Focal Point Based Approach

The location of focal point is defined as the crossing point
of straight lines normal to ridges [49], [50]. Since these
lines usually do not cross at a single point, the average
position [49] or barycenter [50] is used. Since multiple cur-
vature centers might be detected, a separate evaluation step
is used to choose the optimal one [51]. Similar to the dis-
tinctive point based approach, focal point based approach
cannot perform properly when the corresponding area is
not available or very noisy.

2.2.4 Motivation of the Proposed Approach

To illustrate the idea of the proposed pose estimation
algorithm, we make a comparison between finger pose
estimation and face pose estimation (see Fig. 6). Here we
assume that the directions of both face and finger are frontal
and upright and only the centers need to be predicted.
Given a small face patch, human can roughly predict the
face center. When the patch is distinctive, such as eye, the
predicted center is concentrative; While when the patch is
not that distinctive, such as a partial forehead, the predicted
center is scattered. Similarly, the predicted finger center is
concentrative for distinctive orientation patches and scat-
tered for ordinary orientation patches. But, if both patches
are given, the prediction will be more concentrative than
any single patch.

To incorporate the above idea into an algorithm, we
can learn the relative distributions of various orientation
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patches with respect to finger center in off-line training
stage. Given an novel orientation field, we can make pre-
diction based on each orientation patch, accumulate all the
predictions and finally detect the peak as the most possible
pose.

Such an approach is a type of Hough transform. Hough
transform is a general method which has been success-
fully used to solve a number of computer vision problems,
including line detection [52], arbitrary shape detection [53],
instance detection [54], object detection [55]-[58], and action
recognition [59]. Different from those algorithms, the object
here is fingerprint and the voting elements are orientation
patches.

3 PoOSE ESTIMATION

Given a fingerprint image as input, the pose estimation
algorithm outputs the pose (x,y, 8) of the finger, which can
be used to register the fingerprint into a universal coor-
dinate system (called finger coordinate system and defined
by the finger center and direction). Instead of directly using
the grayscale image, we infer the fingerprint pose based
on the orientation field estimated by a local estimation
approach [23], which might be very noisy.

The inference is conducted under a Hough transform
framework. Fingerprint orientation fields in different regions
have rather different patterns, as Fig. 4 shows. This fact
implies that given the pose of a fingerprint and an ori-
entation patch, the location of the patch can be roughly
estimated. Conversely, given an orientation patch and its
location, the pose of the fingerprint can be roughly esti-
mated. Accumulating the estimation conditioned on different
patches will obtain a much concentrative result, as Fig. 6
shows, which indicates a good estimation of the fingerprint
pose. To represent the relationship between orientation patch
and the pose, we first construct a statistical model {¥, Py},
{W, Py}, where W = {¥;} is a set of prototype orientation
patches, which compactly represent all the real orientation
patches, and Py is the set of spatial probability distributions
of all prototype patches in the finger coordinate system.

In the remaining part of this section, we first present
the construction of training orientation fields, then describe
how to obtain the prototype orientation patches and how
to learn their spatial distributions, and finally present the
probabilistic voting algorithm for pose estimation.

3.1 Training Orientation Fields

To generate a reliable statistical model of fingerprint orien-
tation fields, a set of high quality training samples covering
major fingerprint pattern types should be prepared first.
To achieve this goal, we create a training set by manu-
ally marking the orientation fields and the pose of many
fingerprints in a public domain database.

The definition of finger center and direction is already
shown in Fig. 5. Given a fingerprint image, the direction
perpendicular to the finger joint or the ridges located at
the bottom area of the fingerprint is chosen as the finger
direction. Then the finger center is defined as follows:

o For arch fingerprints, the midpoint of the maximum
curvature point and the northernmost straight ridge

©

Fig. 7. Examples of manually marked pose for three types of finger-
prints. The red arrow represents the center and direction of fingerprint,
the green disk, and triangle represent loop and delta points: (a) Arch.
(b) Loop. (c) Whorl.

perpendicular to the finger direction is defined as the
center.

o For fingerprints containing one loop and one delta
(i.e. tented arch, left loop and right loop), the center
is defined as the projective point of the midpoint of
the loop and delta on the line which is parallel to
the finger direction and crosses the loop.

o For whorl fingerprints, the midpoint of the two loops
is defined as the center.

Fig. 7 shows the manually marked poses of three finger-
prints.

The training orientation fields are generated by N¢ (398
in our study) real fingerprints from the NIST SD4 rolled
fingerprint database. They are registered into a unified coor-
dinate system by manually marking the pose for each of
them. Then their blockwise orientation fields are manually
marked as the ground truth with the block of 16 x 16 pix-
els. These data (including pose and orientation field) are
available on the web site (http://ivg.au.tsinghua.edu.cn/).

The training orientation patches are composed of all the
Np x Np orientation patches of training fingerprints and
their locations in the unified coordinate system. Concretely,
for each registered training fingerprint, an Ny x Np window
slides from top to bottom, left to right. If all the orientations
in a patch are valid, the patch and its center coordinate are
recorded. The size of the patch Np x N, has a direct impact
on representativeness. If patches are too small, the num-
ber of prototype patches can be low and their distributions
are not informative; If patches are too large, the number of
prototype patches will be so high that there are no suffi-
cient samples for estimating the spatial distribution of each
prototype patch. Here N, is empirically set as 4.

3.2 Prototype Orientation Patches

To ensure that the prototype orientation patches are real
orientation patches, the well known k-medoids clustering
method [60] is employed to pick out a set of representative
ones {V;,i = 1,2,...,k} from all the training orientation
patches.

Given the training patches and a predefined k (200 in
our study), the k-medoids clustering method consists of
three steps: random initialization, assignment, and medoid
update. The last two steps are iteratively performed until
there is no change in the medoids (namely, the prototype
patches). The standard method is used for the last two
steps. To ensure diversity of the clustering result, we use a
modified random initialization method:

1)  The first prototype patch Wi is randomly selected
from all the training patches.
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2) Let m denote the number of existing prototypes.
The next candidate \IJmH is randomly selected from
all the unchecked patches, and then the similar-
ity scores between \IJW,H and existing prototypes
{W;,i=1,2,...,m} are computed as

T M"U

ZP (cos(\lli(l,n)—lllj(l,n)»z
NN,

S1(W;, ) = 1)
where W;(I, n) is the orientation element at location
(I, n) in patch ;. If any similarity score is larger than
a pre-defined threshold 77 (empirically set as 0.85),
@mH is discarded and a new candidate is randomly
selected and the former diversity examination is
performed again. The examination will continue
until a \Ifm+1 sufficiently dlfferent from the existing
prototypes is found and then W, is determined
as a new prototype.

3) Repeat step 2 until k prototypes are obtained.

3.3 Spatial Distributions of Prototype Orientation
Patches

The distributions of prototype patches are estimated in a
non-parametric manner. The flowchart of the model learn-
ing process is shown in Fig. 8. The probability of prototype
patch W; at location # in the finger coordinate system,
p (¥;lu), is approximated by the frequency of the patches
in cluster i occurring at u, i.e.

p(ilw) = 5. @
where N, ; is the number of fingerprint orientation patches
at u belonging to cluster i and N¢ denotes the number of
training fingerprints. The prototype patch probability distri-
butions at four representative locations are shown in Fig. 9.
As expected, the distributions at four locations are very
different.

The prototype patch probability at a certain position
can be viewed as prior distribution, while we care more
about the spatial posterior probability distribution p (u| ¥;).

The posterior probability can be easily estimated by Bayes’

theorem

ZP(WiIu’)P(M/)

_ p(wilw
Sp(Wilu)’

®)

where #’ is an arbitrary location in the finger coordinate
system and we have p(u) = p(u') in general condition.
The posterior probability distributions of three prototype
patches are shown at the rightmost column of Fig. 8.

3.4 Pose Estimation
Given an input fingerprint, the initial orientation field is
estimated and rotated by various angles. For each rotated
version, a finger center is estimated by probabilistic voting.
The one with the highest value is chosen as the finger cen-
ter and the corresponding rotation angle is determined as
the finger direction. The flowchart of the pose estimation
procedure is shown in Fig. 10 and Fig. 11, and the pseudo
code corresponding to Fig. 10 is given in Algorithm 1.

The initial orientation field O is estimated by the local
Fourier analysis approach in [23]. To deal with strong noise,
at most two strongest orientations are estimated for each
16 x 16 block. The probability of the finger center at position
x (In this paper, we use x to represent finger center (x, y))
is estimated by accumulating the voting, p (x |¥*, v), of all
the available initial orientation patches in the fingerprint
image as follows:

ZP

W* is the most similar prototype patch of orientation
patch o at location v in O, which is defines as:

Alx) = (x|w* v (4)

U* =argmax Sy (0, ;) ,i=1,2,...,k

;i

©)

The similarity between an initial orientation patch and
a prototype patch is given by
Sz (0, ¥;) = ns/(Np x Np), (6)

where 15 is the number of orientation elements whose dif-
ferences are less than a predefined threshold (empirically
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orientations are grouped into 6 bins and the length of the orientations indicates their frequencies in all training fingerprints. The black frames in
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positions.

set as /18). Since 0 may contain two orientation elements
in a block, the differences of closer orientation elements are
selected.

p (x|¥*, v) in equation (4) denotes the probability distri-
bution of finger center x conditioned on W* at location v
and is given by:

px|¥v) =p(ul V),

where 1y = v — x.

To avoid voting by too noisy orientation patches, the
patches whose similarity with the most similar prototype
patch is lower than a predefined threshold (empirically set
as 0.6) do not participate the voting. By accumulating the

@)

voting images of all the orientation patches, the Hough image
of fingerprint center is obtained. Then the position with
maximum value is selected as the center of the fingerprint.

Pose estimation results for six poor quality latents are
shown in Fig. 12, where some of the latents have only very
small region and the central region is usually not available.

4 ORIENTATION FIELD ESTIMATION

For most latent fingerprints, the initial orientation fields
estimated by the local Fourier analysis approach [23]
are often quite noisy and may contain more than one
orientations at many locations. We perform orientation
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Fig. 11. Pose estimation of a fingerprint with unknown direction. The initial orientation field is rotated by a set of possible angles; the center
estimation procedure is then applied to detect the center at each angle; and finally the one with the largest value is chosen.

Algorithm 1 Finger center estimation

Input: Initial orientation field O
A=0
for orientation patch at each location v in O do
U* « closest prototype patch
A=A+px|¥* v)
end for
Output: x* = argmaxA

field regularization to correct errors and determine a sin-
gle orientation at each location by replacing with similar
orientation patches in dictionaries. Since dictionary lookup
still cannot resolve ambiguity in difficult cases, we use
contextual information through the Markov random field
framework [61], [62]. Although the overall approach is
similar to [7], the major difference is that we use differ-
ent dictionaries for different locations instead of a single
dictionary.

In the following subsections, we first describe the off-
line construction of the localized dictionaries and then
present the two-step orientation field regularization algo-
rithm which takes the pose calibrated initial orientation
field as input and outputs a regularized orientation field.
Since the orientation field regularization algorithm based
on localized dictionaries closely follows the algorithm in [7],
the description is relatively concise here. See [7] for a
more complete and detailed description of dictionary based
orientation field regularization.

4.1 Constructing Localized Dictionaries

A localized dictionary D, at location u in the finger coor-
dinate system is obtained by clustering the set T, of all
training patches (here the patch size is empirically set as

6x6) at a small neighborhood around # using the following
procedure:

1)  The first orientation patch in T}, is added into D,,.

2)  The similarities between the next patch in T, and all
the patches in D, are computed using equation (6).
If all the similarities are less than a predefined
threshold (empirically set as 0.8), the patch is added
into D,,.

3) Repeat step 2 until all the patches in T, have been
checked.

After performing the above clustering procedure for all
locations, we obtain a set of localized dictionaries {D,}.
Since the characteristics of ridge orientations at differ-
ent locations are rather different, the sizes of localized
dictionaries (namely, the number of orientation patches
in a localized dictionary) vary according to the location
(from less than 10 to around 600, the average size is 95).
The size of a localized dictionary at a location is closely

Fig. 12. Proposed pose estimation algorithm is able to correctly estimate
the poses of many very incomplete and noisy latent fingerprints.
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300

(a) (b)

Fig. 13. Correlation between the variation of orientation and the size
(the number of orientation patches) of localized dictionaries. (a) Image
of circular standard deviation at each location of registered training ori-
entation fields. (b) Image of size of localized dictionaries. Red color
indicates large value while blue color indicates small value. Generally,
larger deviation indicates larger dictionary size while smaller deviation
indicates smaller dictionary size.

correlated with the circular standard deviation of local
ridge orientation at the same location, as shown in Fig. 13.

4.2 Dictionary Lookup

Using the pose estimated by the pose estimation algo-
rithm described in section 3, the initial orientation field
is registered into the finger coordinate system with the
finger center being the origin and the finger direction
being y-axis. Then the registered orientation field is regu-
larized by localized dictionaries lookup and context-based
correction.

The diagram of localized dictionaries lookup is illus-
trated in Fig. 3. Firstly, the registered orientation field is
partitioned into a set of overlapping orientation patches.
Then, at each location u, the top-N. (empirically set as 6)
candidate patches in the localized dictionary D,, which are
most similar to the initial orientation patch o are selected
with diversity examination. Refer to [7] for more details of
this step.

Dictionary lookup using localized dictionaries has two
advantages over using a global dictionary: 1) patches which
are not likely to appear in a specific position are avoided
and 2) the number of the patches in a localized dictionary
is much smaller than the global one. The average size of a
localized dictionary is 95, while the global dictionary has
about 30K patches. As we can see from the example in
Fig. 14, due to the severe noise, none of the top six can-
didates found in the global dictionary is similar to the true
orientation patch, while the correct orientation patch can
be retrieved within the top six candidates by using the
localized dictionary.

4.3 Context-Based Orientation Field Correction
After dictionary lookup, N. candidate patches are gener-
ated for each initial patch. Then context-based orientation
field correction algorithm is used to select the most proper
candidate considering local similarity and neighborhood
compatibility simultaneously. The procedure is the same as
the one in [7], i.e. minimizing an energy function:

E(r) = Es(x) + wcEc(r), (8)

Top-6 similar patches in the
dictionary (total number is

Top-6 similar patches in the localized
dictionary (total number is 180)

Initial orientation field overlaid on

the latent fingerprint
Fig. 14. Different lookup results of global dictionary and localized dic-
tionary for a noisy initial orientation patch (marked by the red box).
Because the initial orientation patch is very noisy, none of the top six
similar patches in the global dictionary is close the true ridge orienta-
tions. But the top six similar patches in the localized dictionary contain
several good estimates.

where r denotes the indices of determined candidate
patches, Es(r) denotes the similarity term, E.(r) denotes
the compatibility term, and w. is the weight. The energy
function is minimized using the loopy belief propagation
algorithm [61]. Refer to [7] for more details of this step.

5 EXPERIMENTAL RESULTS

In this section, we first introduce the databases for per-
formance evaluation in our work. Then the matching
performances of our algorithm and several representative
algorithms on these databases are reported and compared.

5.1 Databases

To evaluate the performance of our method, three
latent fingerprint databases are used, including the NIST
SD27 latent fingerprint database, Hisign latent fingerprint
database, and Tsinghua Overlapped Latent Fingerprint
(OLF) database. The proposed method is also tested on
the fingerprint orientation extraction (FOE) benchmark of
FVC-onGoing [17], [63], [64], which contains low quality
fingerprints captured using optical scanners.

NIST SD27 is the most widely used public domain latent
fingerprint database, which is composed of 258 latent fin-
gerprints and corresponding rolled ones. Most latents in
NIST SD27 are of very poor quality, with unclear ridge
structures, complex background and overlapping patterns.
Hisign latent fingerprint database contains 673 latent fin-
gerprints (three examples are shown in Fig. 15(a)) and
corresponding rolled ones. All latents in this database are
from solved cases and the average image quality is better
than NIST SD27. Tsinghua Overlapped Latent Fingerprint
database contains 100 overlapped latent fingerprints devel-
oped using magnetic powder and corresponding plain
fingerprints. The FOE-STD-1.0 benchmark in FVC-onGoing
is an on-line automated evaluation system for fingerprint
orientation extraction, which includes 10 fingerprints of
good quality and 50 fingerprints of low quality. Note that
the fingerprints in the FOE benchmark are not accessible to
the participants.

In addition, 27,000 rolled fingerprints (file fingerprints)
in NIST SD14 were used as the background database in the
latent matching experiments to make the evaluation more
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Fig. 15. Comparison of orientation fields estimated by four algorithms (STFT, FOMFE, GlobalDict, and the proposed). The top three latent
fingerprints are from the NIST SD27 latent database, while the bottom three are from the Hisign latent database.

realistic and challenging. Table 1 provides a summary of 3) evaluation of separating overlapped latent fin-
the databases used in this work. gerprints on the Tsinghua Overlapped Latent
Fingerprint database.
5.2 Performance For the evaluations on the NIST SD27 database, besides
Three types of evaluations were performed: the proposed algorithm, three additional algorithms are
1)  direct evaluation of the accuracy of orientation field ncluded:
estimation on the NIST SD27 latent database and 1) combination of gradient-based local estimation and
the FVC-onGoing FOE benchmark, FOMEE-based global model [31],
2) evaluation of matching accuracy on the NIST SD27 2) combination of STFT-based local estimation and low

and Hisign latent databases, and pass filtering [6], and
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TABLE 1
Fingerprint Databases Used in This Study

Database Description Purpose

NIST SD4 2,000 pairs of rolled fin- | statistical
gerprints; http://www.nist.gov/ | model learning,
srd/nistsd4.cfm dictionary

construction

NIST SD14 27,000 pairs of rolled fin- | background
gerprints; http://www.nist.gov/ | database
srd/nistsd14.cfm

NIST SD27 258 pairs of latent finger- | algorithm eval-
prints and mated rolled fin- | uation
gerprints; http://www.nist.gov/
srd/nistsd27.cfm

Tsinghua 100 overlapped latent | algorithm eval-

Overlapped fingerprints and 12 | uation

Latent mated plain  fingerprints;
http://ivg.au.tsinghua.edu.cn

Hisign latent 673 pairs of latent fingerprints | algorithm eval-
and mated rolled fingerprints uation

FOE-STD-1.0 10 fingerprints of good qual- | algorithm eval-

on FVC- | ity and 50 fingerprints of bad | uation

onGoing quality

3) dictionary lookup based on a global dictionary
(referred to as GlobalDict hereinafter) [7].

For overlap separating evaluation, besides the proposed
algorithm and GlobalDict, a special-purpose separating
algorithm [65] is included.

5.2.1 Accuracy of Orientation Field Estimation

The purpose of introducing localized dictionaries is to
reduce both non-word errors and real word errors in esti-
mating orientation field. As shown in the six examples
in Fig. 15, the proposed algorithm does produce much
fewer errors than the rest three orientation field estima-
tion algorithms. Note that for the latents in the NIST SD27
database, which contain structured noise or even multi-
ple fingerprints, manually marked region masks are used
as previous work [7], [37], [38], while for the latents in
the Hisign database, region masks are automatically esti-
mated by comparing the magnitude of strongest waves to
a threshold.

The accuracy of orientation field estimation algorithms is
quantitatively measured by the average Root Mean Square
Deviation (RMSD) of the estimated orientation fields from
the ground truth orientation fields, as suggested in [17].
The ground truth orientation fields of the NIST SD27 latent
database have been manually marked by one of the authors.
Average RMSDs of the four algorithms (STFT, FOMFE,
GlobalDict, and the proposed) are computed both for the
overall NIST SD27 database and three subsets belonging
to three quality levels (Good, Bad and Ugly). To evaluate
the impact of pose estimation on orientation field esti-
mation, we replace the automatically estimated pose by
manually marked pose and test the proposed algorithm too.
To ensure that the manually marked pose is optimal, the
mated rolled fingerprint is also displayed when marking
the pose of latent. As shown in Table 2, the proposed algo-
rithm consistently outperforms the rest three algorithms,
while the utilization of manually marked pose obtains a
slightly better result. The improvement brought by man-
ually marked pose is not significant due to two reasons.

TABLE 2
Average Estimation Error (in Degrees) of the Proposed and
Three Published Orientation Estimation Algorithms
on the NIST SD27 Database

Algorithm All Good Bad Ugly
Proposed  (manually | 13.76 10.87 14.12 16.40
marked pose)

Proposed 14.35 11.15 15.15 16.85
GlobalDict [7] 18.44 14.40 19.18 21.88
FOMEFE [31] 28.12 22.83 29.09 32.63
STFT [6] 32.51 2727 34.10 36.36

Firstly, an incorrectly estimated pose for incomplete fin-
gerprints does not necessarily produce incorrect orientation
fields (see the example in Fig. 16). Secondly, for very poor
quality latents, the current algorithm does not benefit much
from the given pose.

The proposed algorithm has been submitted to the FVC-
onGoing FOE benchmark and the result has been published
on the web site [64]. Its average error on the bad quality
dataset is 9.66 degrees and ranks first, indicating that it can
be applied to low quality livescan fingerprints as well.

5.2.2 Matching Accuracy

Our final goal of estimating orientation field is to improve
latent matching accuracy. Thus, different orientation field
estimation algorithms are further compared by conducting
matching experiment on the NIST SD27 and Hisign latent
databases (using NIST SD14 as the background database).
For each fingerprint (both latent and rolled fingerprints), an
orientation field is estimated using each orientation field

Fig. 16. Wrong estimate of pose does not necessarily impact the esti-
mation of orientation field. (a) True pose. (b) Orientation field estimated
based on the true pose. (c) Incorrectly estimated pose. (d) Orientation
field estimated based on the incorrect pose.
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Fig. 17. CMC curves of six orientation field estimation approaches (manual marking, the proposed algorithm with manually marked pose, the
proposed algorithm with automatically estimated pose, GlobalDict, FOMFE, and STFT) on the NIST SD27 latent database and subsets: (a) all (258
latents); (b) good quality (88 latents); (c) bad quality (85 latents); and (d) ugly quality (85 latents).

algorithm. To make the comparison fair, the same finger-
print enhancement approach [10] is combined with differ-
ent orientation field estimation algorithms. The parameters
of the Gabor filter are set as follows: the local ridge
frequency is fixed at 1/9 cycles per pixel, the standard
deviations of the Gaussian envelope are fixed as 4, and the
local ridge orientation is tuned to the estimated orientation
field. VeriFinger SDK 6.2 [66] is used to extract minutiae
from enhanced fingerprints (both latent and rolled finger-
prints). The same SDK is then used to compute the match
scores between latents and rolled fingerprints. Finally, the
Cumulative Match Characteristic (CMC) curve is used to
evaluate the matching performance. Although VeriFinger
is not designed to encode and match latent fingerprints, it
is arguably the best commercial fingerprint SDK which is
available to the research community, with high full finger-
print matching accuracy and fast matching speed. It can
serve our goal of measuring the relative performances of
different fingerprint orientation field estimation algorithms.
It also allows fair comparison between algorithms from dif-
ferent research groups since it has been widely used by
other researchers.

The CMC curves on the NIST SD27 latent database and
the three subsets are shown in Fig. 17 for six different
orientation field estimation approaches (manual marking,
the proposed algorithm with manually marked pose, the
proposed algorithm with automatically estimated pose,
GlobalDict, FOMFE, and STFT). As we can see from these
curves, there is a clear gap between the GlobalDict algo-
rithm and the two traditional algorithms (FOMFE and
STFT), and there is a clear gap between the proposed algo-
rithm and the GlobalDict algorithm. Note that the result
of manually marked orientation field is much better than
the one in Fig. 13 in [7]. Since the only difference is that
in [7] the rolled fingerprints are directly fed to VeriFinger
and here the enhanced (by the proposed approach) rolled
fingerprints are fed to VeriFinger, we can conclude that the
proposed approach outperforms VeriFinger in the case of
rolled fingerprints too.

The CMC curves on the Hisign latent database are
shown in Fig. 18. Similarly, there is a clear gap between
the GlobalDict algorithm and the two traditional algo-
rithms (FOMFE and STFT), and there is a clear gap between
the proposed algorithm and the GlobalDict algorithm. The
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Fig. 18. CMC curves of four orientation field estimation algorithms on
the Hisign latent database.

relatively high accuracy on the Hisign latent database is
due to that the latents in this database have been cropped
by latent examiners to remove background noise and these
latents (with manually marked minutiae) were identified
by AFIS at high rank on a large database.

5.2.3 Separating Overlapped Latent Fingerprints

In an overlapped latent fingerprint image, the noise is
from another fingerprint. This characteristic makes tradi-
tional orientation field estimation algorithms totally fail in
the case of overlapped latents, since there is an implicit
assumption in most orientation field estimation approaches
that the noise is randomly distributed. To address the prob-
lem, several specific algorithms have been proposed for
separating overlapped fingerprints [65], [67], [68]. Given a
region mask for the latent fingerprint of interest, the pro-
posed method can be directly apply to these fingerprints
(note that the constrained relaxation labeling algorithm [65]
and the GlobalDict algorithm [7] require the region masks
of both the fingerprint of interest and the overlapping
area). The CMC curves on the Tsinghua OLF database in
Fig. 19 show that the proposed method even outperforms
the specially designed algorithm.

Cumulative Match Characteristic
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Fig. 19. CMC curves of three orientation field estimation algorithms on
the Tsinghua Overlapped Latent Fingerprint database.

TABLE 3
Computation Times (in Seconds) of the Major Steps of the

Proposed Algorithm on Different Databases

Step NIST Hisign Tsinghua | NIST
SD27 Latent OLF SD14

Initial orientation | 3.5 9.6 13.5 22.2

field estimation

Pose estimation 32 5.7 44 7.3

Orientation field | 0.94 1.8 12 2.2

regularization

Enhancement 0.95 1.7 1.1 2.1

5.2.4 Computational Complexity

Although the efficiency of automatic latent fingerprint fea-
ture extraction is not a critical issue in forensic applications,
it is still an important performance measure of an algo-
rithm. The computational costs of the main steps of the
proposed approach are tested on a PC with 3.30 GHz CPU.
In the off-line training stage, due to large amount of training
orientation patches (about 436,000 patches extracted from
398 real fingerprints), the k-medoids clustering based proto-
type patch and spatial distribution learning takes about 23.6
hours. The construction of localized dictionaries takes about
0.72 hours, while the construction of a global dictionary
spends about 7.5 hours. Constructing localized dictionaries
are faster because 1) the time complexity of the clustering
algorithm is O(n?), where n is the number of samples, and
2) the construction of each local dictionary uses only orien-
tation patches in the same location. All the off-line training
steps are implemented in MATLAB. In the on-line stage,
the average times of processing fingerprints from different
databases are shown in Table 3. Among the four steps, pose
estimation is implemented in C language while the others
are implemented in MATLAB.

6 SUMMARY AND FUTURE WORK

Estimation of fingerprint orientation field is a critical step in
automatic fingerprint recognition. A number of algorithms
have been published on this topic and the performance
of the state-of-the-art algorithms is fairly good for most
livescan and inked fingerprints. But in the case of latent
fingerprints, the performance of these algorithms is still far
from satisfactory. To deal with the severe noise in many
latent fingerprints, prior knowledge of fingerprints should
be taken into account.

The study in [7] shows that utilization of prior knowl-
edge of fingerprints in orientation field estimation is very
promising. But the use of a single global dictionary for the
whole fingerprint has a drawback: valid local ridge pat-
terns may appear at an impossible location of fingerprint.
This problem is analogous to real word error in spelling
correction.

A natural idea to overcome the limitation of global dic-
tionary is to replace it with a set of localized dictionaries.
But a big obstacle to localized dictionaries is that the pose
of the fingerprint need to be known. Estimating fingerprint
pose from poor quality latent fingerprints is a very chal-
lenging problem and also a very under-researched topic.

In this paper, we propose a Hough transform based fin-
gerprint pose estimation method and a localized dictionary
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lookup based fingerprint orientation field estimation
method. Based on the spatial distributions of the proto-
type orientation patches, which are learned from a set of
registered training orientation fields, the proposed pose
estimation method is robust against the problems of low
image quality and small available region. Since the pose of
the fingerprint is reliably estimated, the location-dependent
prior knowledge of fingerprint orientation fields is able
to guide orientation field regularization. The experimental
results on two latent fingerprint databases demonstrate the
superiority of the proposed algorithm comparing with three
representative orientation field estimation algorithms, and
the results on the overlapped latent fingerprint database
show that the proposed approach performs even better than
the specially designed state-of-the-art algorithm. Although
targeted for latent fingerprints, this algorithm can deal with
low quality plain and rolled fingerprints as shown in the
experiments.

However, the proposed algorithm can be still improved
in several ways:

1)  constructing a framework to optimize the variables
in this work, such as the number of training orien-
tation fields, the number of prototype patches, the
size of prototype patches, and the size of the patches
in the dictionaries and so on;

2) developing hierarchical approaches for pose estima-
tion and orientation field regularization since the
current scheme is too time consuming for civilian
applications;

3) developing an automatic region segmentation algo-
rithm for latent fingerprints with strong structured
noise or overlapping fingerprints.
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